Learning a Distance Metric by Empirical Loss Minimization
نویسندگان
چکیده
In this paper, we study the problem of learning a metric and propose a loss function based metric learning framework, in which the metric is estimated by minimizing an empirical risk over a training set. With mild conditions on the instance distribution and the used loss function, we prove that the empirical risk converges to its expected counterpart at rate of root-n. In addition, with the assumption that the best metric that minimizes the expected risk is bounded, we prove that the learned metric is consistent. Two example algorithms are presented by using the proposed loss function based metric learning framework, each of which uses a log loss function and a smoothed hinge loss function, respectively. Experimental results suggest the effectiveness of the proposed algorithms.
منابع مشابه
Empirical Risk Minimization for Metric Learning Using Privileged Information
Traditional metric learning methods usually make decisions based on a fixed threshold, which may result in a suboptimal metric when the inter-class and inner-class variations are complex. To address this issue, in this paper we propose an effective metric learning method by exploiting privileged information to relax the fixed threshold under the empirical risk minimization framework. Privileged...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملRobust Distance Metric Learning via Simultaneous L1-Norm Minimization and Maximization
Traditional distance metric learning with side information usually formulates the objectives using the covariance matrices of the data point pairs in the two constraint sets of must-links and cannotlinks. Because the covariance matrix computes the sum of the squared l2-norm distances, it is prone to both outlier samples and outlier features. To develop a robust distance metric learning method, ...
متن کاملLearning Local Metrics and Influential Regions for Classification
The performance of distance-based classifiers heavily depends on the underlying distance metric, so it is valuable to learn a suitable metric from the data. To address the problem of multimodality, it is desirable to learn local metrics. In this short paper, we define a new intuitive distance with local metrics and influential regions, and subsequently propose a novel local metric learning meth...
متن کاملMinimax Statistical Learning and Domain Adaptation with Wasserstein Distances
As opposed to standard empirical risk minimization (ERM), distributionally robust optimization aims to minimize the worst-case risk over a larger ambiguity set containing the original empirical distribution of the training data. In this work, we describe a minimax framework for statistical learning with ambiguity sets given by balls in Wasserstein space. In particular, we prove a generalization...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011